Deformations of generalized complex structures

Topological σ-model: this is a QFT describing maps

\[\mathcal{O} \rightarrow \mathcal{X} \]

The top σ-model is special since it has an extra operator $\mathcal{Q}: \mathcal{Q}^2 = 0$

The observables are the elements in the \mathcal{Q}-cohomology. The metric is needed to define the model but at the end the observables are independent of this metric.

Witten: For a Kähler target there is always a (dilemma) σ-model. A procedure called topological twisting produces two new theories:

- A-model
- B-model

They exist always classically but to make sense of them quantum mechanically we need an extra anomaly cancellation.
For the B-model to exist we need \(X \) to be a CY.

If \(X \) is a CY then the best operator for the B-model is:

\[Q = f \]

and the observables are \(H^p (\Lambda^q T_X) \).

Consider the special case \(p = q = 1 \).

If we have an observable \(o \in H^1 (T_X) \) then \(o \) can be thought of as a complex deformation of \(X \).

Complex infrarational deform can be obstructed i.e., for \(o \) to integrate to an actual deformation we need to have

\[\text{obs} (o) = 0 \]

where

\[\text{obs} : H^1 (T_X) \rightarrow H^2 (T_X) \]

is the quadratic obstruction map of Kodaira-Spencer.
However, the theorem of Tran-Todorov says that for a CY

\[\mathcal{O}_S \cong 0 \]

\[\Rightarrow \text{every observable in } H^1(T_X) \text{ is an obstruction.} \]

B. G. Kosters extended this to arbitrary \((p,q)\) classes and showed that there exists a smooth extended moduli space parameterizing B-models on a CY \(X\).

It turns out that one can define general topological B-models associated with a generalized CY structure.

Recall: A generalized complex structure is

\[J : \mathcal{T} \otimes \mathcal{T}^* \rightarrow \mathcal{T} \otimes \mathcal{T}^* \]

with \(J^2 = -\text{id} \) and integrability.

We also have a generalized Kahler structure.
A pair \((X, J) \) of \(\mathfrak{gc} \) structures is a generalized \(\text{kähler} \) structure if

1. \(IJ = J^*I = -1 \)
2. \(-IJ\) is positive definite.

Roček and co-Authors showed that one can always define a \((2,1) \) \(\sigma \)-model starting with any generalized \(\text{kähler} \) manifold.

Now we again can construct a \(TQFT \) - a topological twist of the \((2,1) \) \(\sigma \)-model on \((X, J, J)\).

Again we have two twists corresponding to \(X \) and \(J \) respectively.

(There is no obvious way to order these twists.)

Again we need an anomaly cancellation which turns out to be the generalized \(CY \) condition.
Recall: If J is a GC structure on M, then one may find a canonical line bundle L such that $K = A^*(M) \otimes L$ is the annihilator of $\mathfrak{g} = \ker (J - i)$.

Now (M, J) is a generalized CY if $\mathfrak{g} \subset \mathfrak{g} \otimes (M, K)$ satisfies:

- \mathfrak{g} is nowhere zero
- $d\mathfrak{g} = 0$

Now (M, J) is a generalized CY and we can find a complementing \mathcal{F} to \mathfrak{g} into a generalized Kähler structure, then the $(1,1)$-model admits a quantum topological twist corresponding to J.

Moreover, $Q \subset \mathfrak{g}$, and the observables are in $H^*(d\mathfrak{g})$.

What about deformations?
Suppose \(p = 2 \) then \(0 \in H^2(\Omega) \)
corresponds to an infinitesimal defo of \(J \) as a gc structure

It turns out that for a generalized CY manifold, the natural quadratic obstruction map

\[
\text{obs} : H^2(\Omega) \to H^3(\Omega)
\]

always vanishes and that we have an ordinary and extended moduli space of generalized CY structure.

This done by giving a gc version of the Tian-Todorov lemma and the BV deformation formula.

Actually it turns out that the extended moduli space is also a Frobenius manifold.

To see the trace we look at

\[
\mathcal{N}_E \overset{\cdot}{\times} \mathcal{N}_E \quad \text{and we expect to have}
\]

\[
\mathcal{S} : \mathcal{N}_E \to \mathbb{C}
\]
A naive definition would be to take

\[S(d) = \int \mathbb{R} \times (d+1) \mathbb{R} \]

This is the direct analogue of the complex case.

This does not work and does not give a Frobenius structure. The correct formula is suggested by the interpretation of \(S \) as the one point function in the TQFT.

The answer is gotten as follows. Consider

\[\tau : T \otimes T^* \]

given by \(\tau = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)

Now, \(\tau \tau^{-1} \) turns out to be a new gc structure and if we take \(\tilde{S} \) to be the corresponding pure spinor then

\[\tilde{S}(\tau) = \int \mathbb{R} \times (d+1) \mathbb{R} \]

turns out to be the correct definition.
The 3 tensor of the Frobenius structure is

\[C_{abc} = \frac{1}{2} \left(a_b \cdot a_c \right) \]

\[S = \frac{1}{2} \int \epsilon_{\phi \wedge A} \wedge \frac{1}{6} \rho \text{e}^{\phi} e v e n e \]

\(E \) is solution of MC equation.